
PSyclone autodiff module
Release 0.0.1

Julien Remy

Sep 06, 2023

TABLE OF CONTENTS

1 Introduction 1

2 Automatic differentiation (AD) 3
2.1 Forward- or tangent-mode . 4
2.2 Reverse- or adjoint-mode . 4

3 Getting started 7
3.1 Download . 7
3.2 Environment and dependencies . 7
3.3 Installing . 7
3.4 Tutorial . 8

4 Implementation 9
4.1 Implemented features . 9
4.2 Missing features . 10

5 Reverse-mode AD (adjoint) 11
5.1 Reverse-mode transformations . 11
5.2 Value tape . 15
5.3 Generating adjoints . 16

6 Forward-mode AD (tangent) 21
6.1 Forward-mode transformations . 21
6.2 Generating derivatives . 23

Index 25

i

ii

CHAPTER

ONE

INTRODUCTION

PSyclone autodiff module is PSyclone’s prototype implementation of source-to-source automatic differentiation
(AD). It takes generic Fortran code and applies automatic differentiation in forward-mode (tangent) or reverse-mode
(adjoint).

It is inspired by Tapenade (see Hascoet and Pascual1 and2), which is also used to perform numerical tests of the trans-
formations, and OpenAD (see Utke et al.3).

The general approach and transformations rules were adapted from Griewank and Walther4.

This module was created as a M1 internship project in the AIRSEA team of Inria Grenoble.

1 Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool: principles, model, and specification. ACM Transactions on
Mathematical Software (TOMS), 39(3):1–43, 2013.

2 Laurent Hascoët and Valérie Pascual. Tapenade 2.1 user’s guide. PhD thesis, INRIA, 2004.
3 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout, Patrick Heimbach, Chris Hill, and Carl Wunsch. Openad/f: a modular

open-source tool for automatic differentiation of fortran codes. ACM Transactions on Mathematical Software (TOMS), 34(4):1–36, 2008.
4 Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, 2008.

1

https://team.inria.fr/ecuador/en/tapenade/
https://www.mcs.anl.gov/OpenAD/
https://team.inria.fr/airsea/

PSyclone autodiff module, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER

TWO

AUTOMATIC DIFFERENTIATION (AD)

Simply put, the aim of automatic differentiation (AD) is to automatically obtain the derivatives of somes variables
output by an existing program with respect to some of its input variables.

It avoids resorting to symbolic differentiation, which is error-prone when done manually and quickly of excessive
complexity when applied automatically, or finite differences, which are inexact.

To gain an intuition of the way this is achieved, consider a program computing return values of variables 𝑦𝑗 from
values of arguments 𝑥𝑖 through intermediate values 𝑣𝑘, where each value is obtained from its direct predecessors
through elemental operations (+,×, /, exp, etc.).

Let us denote:

• independent variables: (𝑥𝑖)𝑖, 𝑖 ∈ {1, 2, ..., 𝑛},

• dependent variables: (𝑦𝑗)𝑗 , 𝑗 ∈ {1, 2, ...,𝑚},

• intermediate values: (𝑣𝑘)𝑘 which may or not be assigned to variables in the program,

• relation: 𝑖 ≺ 𝑗 if 𝑣𝑗 depends on 𝑣𝑖, eg. below 1 ≺ 5.

• predecessors: 𝑢𝑗 := (𝑣𝑖)𝑖≺𝑗 eg. below 𝑢5 =

(︂
𝑣1
𝑣2

)︂
• operation: 𝜙𝑗 : 𝑢𝑗 ↦→ 𝑣𝑗 eg. below 𝑣5 = 𝜙5(𝑢5)

𝑥1 = 𝑣−2 𝑣1 𝑣5𝜙5
𝑣8 = 𝑦1

𝑣9 = 𝑦2

𝑣2 𝑣6
𝑥2 = 𝑣−1 𝑣3 𝑣7 𝑣10 = 𝑦3

𝑥3 = 𝑣0 𝑣4

Fig. 1: Example program

Since all programs can be reduced to sequential elemental operations in this fashion, automatic differentiation allows

to compute
𝜕𝑦𝑗
𝜕𝑥𝑖

(𝑥1, . . . , 𝑥𝑛) by differentiating operations 𝜙𝑘 : 𝑢𝑘 ↦→ 𝑣𝑘 and using the chain rule.

It comes in two main flavors, usually called forward- or tangent-mode and reverse- or adjoint-mode, which differ in
the way substitutions are performed in the chain rule, which partial derivatives are computed as a result and the order
in which statements in the original program are differentiated by the AD transformation.

3

PSyclone autodiff module, Release 0.0.1

2.1 Forward- or tangent-mode

Using the notations introduced above, forward-mode automatic differentiations allows to compute all derivatives w.r.t.
a single independent variable 𝑑 ∈ (𝑥𝑖)𝑖.

Let us denote the derivatives w.r.t. 𝑑 as

�̇�𝑖 =
𝜕𝑣𝑖
𝜕𝑑

such that the chain rule writes

�̇�𝑗 =
∑︁
𝑖≺𝑗

𝜕𝜙𝑗

𝜕𝑣𝑖
(𝑢𝑗)�̇�𝑖

Forward-mode automatic differentation is equivalent to applying substitutions in the order indicated by the arrow in

�̇�𝑘+2 =

←−−−−−−−−−−−−−−
𝜕𝑣𝑘+2

𝜕𝑣𝑘+1

(︂
𝜕𝑣𝑘+1

𝜕𝑣𝑘
�̇�𝑘

)︂
⏟ ⏞

�̇�𝑘+1

Initializing 𝑑 = 1 and �̇�𝑘 = 0,∀𝑣𝑘 ̸= 𝑑,

we obtain in a single evaluation
(︁

𝜕𝑦𝑗

𝜕𝑑 (𝑥1, . . . 𝑥𝑛)
)︁
𝑗
= 𝐽((𝑥𝑖)𝑖)(0 . . . 𝑑 . . . 0)

𝑇

where 𝐽 is the Jacobian matrix 𝐽 = ∇

⎛⎜⎝ 𝑦1(𝑥1, . . . , 𝑥𝑛)
...

𝑦𝑚(𝑥1, . . . , 𝑥𝑛)

⎞⎟⎠.

2.1.1 Advantages and inconvenients

Forward-mode is easy to implement as derivatives can be computed in the same order of computation as that of the
original program.

If there are less independent than dependent variables, its complexity is lower than that of the reverse- or adjoint-mode.
But frequently, and maybe even more so in ocean and atmosphere models, the number of inputs greatly exceeds the
number of outputs, requiring many repeated evaluations, one for each input or independent variable to differentiate
with respect to.

2.2 Reverse- or adjoint-mode

Using the notations introduced above, reverse-mode automatic differentiations allows to compute all derivatives of a
single dependent variable 𝑧 ∈ (𝑦𝑗)𝑗 .

Let us denote the adjoints w.r.t. 𝑧 as

𝑣𝑖 =
𝜕𝑧

𝜕𝑣𝑖

such that the chain rule writes

𝑣𝑖 =
∑︁
j≻i

v̄j
𝜕𝜙𝑗

𝜕𝑣𝑖
(
?
uj)

where bold font is used to highlight how the value of the adjoint 𝑣𝑖 depends on successors of 𝑣𝑖.

4 Chapter 2. Automatic differentiation (AD)

PSyclone autodiff module, Release 0.0.1

Reverse-mode automatic differentation is equivalent to applying substitutions in the order indicated by the arrow in

−−−−−−−−−−−−−−→(︂
𝑣𝑘

𝜕𝑣𝑘
𝜕𝑣𝑘−1

)︂
⏟ ⏞

𝑣𝑘−1

𝜕𝑣𝑘−1

𝜕𝑣𝑘−2
= 𝑣𝑘−2

Initializing 𝑧 = 1 and 𝑣𝑘 = 0,∀𝑣𝑘 ̸= 𝑧,

we obtain in a single evaluation
(︁

𝜕𝑧
𝜕𝑥𝑖

(𝑥1, . . . , 𝑥𝑛)
)︁
𝑖
= ∇𝑇 𝑧(𝑥1, . . . , 𝑥𝑛) = (0 . . . 𝑧 . . . 0)𝐽(𝑥1, . . . , 𝑥𝑛).

2.2.1 Advantages and inconvenients

Reverse-mode is quite a lot more complicated to implement than forward-mode as adjoints need to be computed in the
reversed order of computation compared to that of the original program as illustated in the example below.

If there are less dependent than independent variables, as is often the case, its complexity is lower than that of the
forward- or tagent-mode.

However, when some variables are overwritten in the program, reverse-mode also requires running the original program
and recording overwritten values, and eventually some the results of some operations, when they appear in the com-
putations of some adjoints. This add further complications compared to forward-mode and requires using a persistent
“tape”, which needs to be kept in memory, or recomputing values as many times as they are required.

2.2.2 A simple example in reverse-mode with non-linearities

Let us consider the simple computations displayed below and illustate how to compute the adjoints �̄�1 =
𝜕𝑧

𝜕𝑥1
and

�̄�2 =
𝜕𝑧

𝜕𝑥2
for a chosen dependent variable 𝑧 ∈ {𝑦1, 𝑦2}. Initialize with ∀𝑖, �̄�𝑖 = 0,∀𝑘, 𝑣𝑘 = 0 and choose (𝑦1 =

𝑥1 𝑣1 = 𝑥2
1 𝑣3 = exp(𝑥2

1) 𝑦1 = exp(𝑥2
1)− 3 * 𝑥1 + 𝑥2

𝑣2 = 3 * 𝑥1 𝑣4 = 3 * 𝑥1 + 𝑥2 𝑦2 = 𝑥2*(3 * 𝑥1 + 𝑥2)

3

𝑥2

Fig. 2: Simple program example

1, 𝑦2 = 0) or (𝑦1 = 0, 𝑦2 = 1) to obtain the adjoints.

Notice that the adjoint of variables appearing as operands in the original computations (top) are incremented in the
reverse-mode ones (bottom). Moreover, non-linearities in the original occasion the presence of operation results/ non-
adjoint variables in the adjoint computations, which could be either recomputed or recorded and restored from a tape.

2.2. Reverse- or adjoint-mode 5

PSyclone autodiff module, Release 0.0.1

�̄�1+ = 𝑣1 * 2 * 𝑥1 𝑣1+ = 𝑣3 * 𝑣3 𝑣3+ = 𝑦1 * 1 𝑦1

�̄�1+ = 𝑣2 * 3 𝑣2+ = 𝑣4 * 1 𝑣4+ = 𝑦1 * (−1) 𝑦2

𝑣4+ = 𝑦2 * 𝑥2

�̄�2+ = 𝑣4 * 1

�̄�2+ = 𝑦2 * 𝑣4

Fig. 3: Reverse-mode example

6 Chapter 2. Automatic differentiation (AD)

CHAPTER

THREE

GETTING STARTED

3.1 Download

PSyclone autodiff module is hosted on GitHub: https://github.com/JulienRemy/PSyclone/tree/automatic_
differentiation.

It is currently an experimental protoype.
The latest version is the automatic_differentiation branch.

To download it, clone the repository using

$ git clone https://github.com/JulienRemy/PSyclone.git

3.2 Environment and dependencies

Please follow the instructions regarding environments and dependencies at https://psyclone.readthedocs.io/en/stable/
getting_going.html.

This module also requires NumPy, which can be installed using pip:

$ pip install numpy

The tutorials also require Jupyter Notebook, which can be installed using pip:

$ pip install jupyter

3.3 Installing

PSyclone and its autodiff module can then be installed using pip:

$ cd <PSYCLONE_HOME>
$ pip install [--user] .

or using setup.py:

7

https://github.com/JulienRemy/PSyclone/tree/automatic_differentiation
https://github.com/JulienRemy/PSyclone/tree/automatic_differentiation
https://psyclone.readthedocs.io/en/stable/getting_going.html
https://psyclone.readthedocs.io/en/stable/getting_going.html

PSyclone autodiff module, Release 0.0.1

$ cd <PSYCLONE_HOME>
$ python setup.py install

3.4 Tutorial

See the src/psyclone/autodiff/tutorials/ directory for a Jupyter Notebook tutorial detailling the use of the module in
reverse-mode.

To open it using Jupyter Notebook:

$ jupyter-notebook tuto1.ipynb

8 Chapter 3. Getting started

https://github.com/JulienRemy/PSyclone/tree/automatic_differentiation/src/psyclone/autodiff/tutorials

CHAPTER

FOUR

IMPLEMENTATION

This module performs source-to-source automatic differentiation of a target routine, in which dependent variables are
differentiated with respect to independent variables.

This is implemented in PSyclone by parsing the source code file containing the target routine, and eventually the
routines it calls, transforming it into a PSyIR AST and applying automatic differentiation transformations in either
forward-mode or reverse-mode to the nodes thus obtained. The resulting PSyIR tree is then written to Fortran source
code.

4.1 Implemented features

For now, only Fortran subroutines ie. neither functions nor programs can be transformed. The implementation only
deals with scalar variables, which is to say that subroutines containing arrays, either as local variables or as arguments
cannot yet be transformed. The statements the target routine (and eventual routines it calls) may contain are :

• assignments (PSyIR Assignment nodes),

• calls to subroutines (PSyIR Call nodes).

These statements may contain unary and binary linear or non-linear operations (PSyIR UnaryOperation and
BinaryOperation nodes).

An optional verbose mode is available, which is especially useful when examining the transformed statements and
routines in reverse-mode.

Basic simplification and substitution rules can be applied as an optional postprocessing step to shorten the transformed
code and improve its readability.

Reverse-mode transformations store overwritten values using a “tape” that is implemented as a static array, rather
than a LIFO stack as in many implementations, so that the transformed routines may (someday) be parallelized and/or
offloaded to GPU.

Also in reverse-mode, three types of reversal schedules are available:

• split reversal schedules,

• joint reversal schedules,

• “link” reversal schedules specifying strong or weak links for all calling-called pairs of routines.

9

PSyclone autodiff module, Release 0.0.1

4.2 Missing features

What has not been implemented includes:

• functions and programs,

• differentiating called routines that are not found in the same file (or Container node) as the target routine,

• nary operations,

• loops,

• control flow,

• array variables and arguments,

• activity analysis (dependence DAG),

• to-be-recorded (TBR) analysis,

• taping operations results to reduce the computational complexity of the adjoint,

• and much more.

10 Chapter 4. Implementation

CHAPTER

FIVE

REVERSE-MODE AD (ADJOINT)

The adjoint of the Fortran source code is constructed using a source-to-source and line-by-line approach, transforming
the target (to be transformed) routine into three different routines, one of which computes the adjoints of the variables
by reversing the order of computation of the target routine.

This is implemented in PSyclone by parsing the source code file containing the target routine, and eventually the routines
it calls, transforming it into a PSyIR AST and applying reverse-mode automatic differentiation transformations to the
nodes thus obtained. The resulting PSyIR tree is then written to Fortran source code.

5.1 Reverse-mode transformations

Several transformations, to be applied on PSyIR nodes, have been implemented. In reverse-mode, all of them fol-
low the naming convention ADReverse[PSyIRNodeSubclass]Trans. The one of most interest for the user is the
ADReverseContainerTrans class and its apply method.

After parsing the Fortran code file containing the target routine, an ADReverseContainerTrans instance should be
applied to it to perform automatic differentiation. The ADReverseContainerTrans.applymethod in turn applies an
ADReverseRoutineTrans to the target routine, which goes line-by-line through the statements found in the Routine
node, applying ADReverse[PSyIRNodeSubclass]Trans to the statements, etc.

ADReverseContainerTrans

ADReverseRoutineTrans

(in)dependent vars

ADReverseAssignmentTrans

ADReverseOperationTrans

LHS adjoint

parent adjointif composed

ADReverseCallTrans

if operation argument

transform called routine

Fig. 1: Reverse-mode AD transformation call graph

11

PSyclone autodiff module, Release 0.0.1

5.1.1 Container transformation

class psyclone.autodiff.transformations.ADReverseContainerTrans

A class for automatic differentation transformation of Container nodes in reverse-mode. This is the transforma-
tion to apply on the PSyIR AST generated from a source.

apply(container, routine_name, dependent_vars, independent_vars, reversal_schedule, options=None)
Applies the transformation, returning a new container with routine definitions for both motions using the
reverse-mode of automatic differentiation.

Options:
- bool ‘jacobian’: whether to generate the Jacobian routine. Defaults to False.
- bool ‘verbose’ : toggles explanatory comments. Defaults to False.
- bool ‘simplify’: True to apply simplifications after applying AD transformations. Defaults to True.
- int ‘simplify_n_times’: number of time to apply simplification rules to BinaryOperation nodes. Defaults
to 5.
- bool ‘inline_operation_adjoints’: True to inline all possible operation adjoints definitions. Defaults to
True.

Parameters

• container (psyclone.psyir.nodes.Container) – Container Node to the trans-
formed.

• routine_name (Str) – name of the Routine to be transformed.

• dependent_vars (List[Str]) – list of dependent variables names to be differentiated.

• independent_vars (List[str]) – list of independent variables names to differentiate with
respect to.

• reversal_schedule (psyclone.autodiff.ADReversalSchedule) – reversal sched-
ule for routined called inside the one to transform (and inside them, etc.).

• options (Optional[Dict[Str, Any]]) – a dictionary with options for transforma-
tions, defaults to None.

Returns
a copied and modified container with all necessary Routine definitions.

Return type
psyclone.psyir.nodes.Container

As can be seen, the required arguments include the PSyIR [File]Container node obtained by parsing and trans-
forming the source code, the names of the target routine, dependent variables (to be differentiated) and independent
variables (to differentiate with respect to), as well as the reversal schedule and eventual transformation options.

The transformation returns a PSyIR Container node containing four Routine definitions for:

• the advancing (original) motion,

• the recording motion, which records overwritten values to the tape,

• the returning motion, which recovers values from the tape and computes the adjoints of the independent variables,

• the reversing motion, which combines the two precedent recording and returning motions and is the one to call
in order to differentiate.

12 Chapter 5. Reverse-mode AD (adjoint)

PSyclone autodiff module, Release 0.0.1

If some other routine is called by the target one, the returned Container node also contains four definitions for its
different motions.

Target routine

The target routine is the Fortran routine in which to differentiate the dependent variables with respect to the independent
variables. The routines it may call will also be differentiated iff they can be found in the [File]Container being
transformed.

Dependent variables

The dependent variables are those to differentiate. Their intent in the target routine must be compatible with their values
being returned, ie. they cannot be intent(in) arguments of the target routine.

Independent variables

The independent variables are those to differentiate with respect to. Their intent in the target routine must be compatible
with their values being provided as arguments, ie. they cannot be intent(out) arguments of the target routine.

Reversal schedules

Reversal schedules (see Griewank and Walther1 chapter 12.2, p.265) specify the way a transformed routine may call
other transformed routines. They are implemented as 3 subclasses of ADReversalSchedule.

As an example let us consider the target routine foo calling subroutines bar and qux.

subroutine foo(x, y)
call bar(x, y)
call qux(x, y)

end subroutine foo

And let us denote:

• advancing □ routine the original,

• recording ◁ routine the one recording values to the tape,

• returning ▷ routine the one computing the adjoints,

• reversing ◁▷ routine the one combining the two preceding. Call it to differentiate.

Split reversal schedule

In split reversal, children (called) routines follow the recording or returning motion of their parent (calling) routine.

By doing so, the computational complexity is kept as low as possible but values stored to the tape in the recording
motion of the called routines need to be kept until they are called in returning motion, thus using a possibly large
amount of memory.

1 Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, 2008.

5.1. Reverse-mode transformations 13

PSyclone autodiff module, Release 0.0.1

foo ◁▷

foo ◁

bar ◁ qux ◁

foo ▷

bar ▷ qux ▷

Fig. 2: Split reversal schedule

Joint reversal schedule

In joint reversal, all children (called) routines advance without recording when their parent (calling) routine is recording
and reverse (record then immendiatly return) when their parent routine is returning.

On the one hand, this reversal schedule uses a smaller tape overall, as the values used in adjoining the called routines
do no need to be stored longer than for them to be reversed. On the other hand, called subroutines computations are
repeated, with increases the computational complexity of the adjoint program.

foo ◁▷

foo ◁

bar □ qux □

foo ▷

bar ◁▷

bar ◁ bar ▷

qux ◁▷

qux ◁ qux ▷

Fig. 3: Joint reversal schedule

“Link” reversal schedule

A third possibility is to specify strong or weak links for each caller-called pair of routines, where strong links behave
as in split reversal and weak links as in joint reversal.

Below is an illustration of our toy example with foo-bar a strong link and foo-qux a weak link.

foo ◁▷

foo ◁

bar ◁ qux □

foo ▷

bar ▷ qux ◁▷

qux ◁ qux ▷

Fig. 4: Link reversal schedule with foo-bar a strong link and foo-qux a weak link

14 Chapter 5. Reverse-mode AD (adjoint)

PSyclone autodiff module, Release 0.0.1

5.2 Value tape

Prevalues of overwritten variables are recorded and restored from a value tape, implemented as a static array. The
transformations themselves employ an ADValueTape to generate recording and restoring statements to and from the
value tape array.

class psyclone.autodiff.tapes.ADValueTape(name, datatype)
A class for recording and recovering function values in reverse-mode automatic differentiation. The prevalues
of references are recorded. Based on static arrays storing a single type of data rather than a LIFO stack. Provides
methods to create the PSyIR assignments for recording and restoring operations.

Parameters

• name – name of the value_tape (after a prefix).

• datatype (Union[psyclone.psyir.symbols.ScalarType, psyclone.psyir.
symbols.ArrayType]) – datatype of the elements of the value_tape.

Raises

• TypeError – if name is of the wrong type.

• TypeError – if datatype is of the wrong type.

• NotImplementedError – if datatype is not of type ‘ScalarType’.

record(reference)
Add the reference as last element of the value_tape and return the Assignment node to record the prevalue
to the tape.

Parameters
reference (psyclone.psyir.nodes.Reference) – reference whose prevalue should be
recorded.

Raises

• TypeError – if reference is of the wrong type.

• TypeError – if the intrinsic of reference’s datatype is not the same as the intrinsic of the
value_tape’s elements datatype.

• NotImplementedError – if the reference’s datatype is ArrayType.

Returns
an Assignment node for recording the prevalue of the reference as last element of the
value_tape.

Return type
psyclone.psyir.nodes.Assignment

restore(reference)
Restore the last element of the value_tape if it is the symbol argument and return the Assignment node to
restore the prevalue to the variable.

Parameters
reference (psyclone.psyir.symbols.DataSymbol) – reference whose prevalue should
be restored from the value_tape.

Raises
TypeError – if reference is of the wrong type.

5.2. Value tape 15

https://psyclone.readthedocs.io/en/latest/psyir.html#psyclone.psyir.symbols.DataSymbol

PSyclone autodiff module, Release 0.0.1

Returns
an Assignment node for restoring the prevalue of the reference from the last element of the
value_tape.

Return type
psyclone.psyir.nodes.Assignment

5.3 Generating adjoints

The transformations applied to generate adjoints are detailled below. They mostly follow the guidelines found in
Griewank and WaltherPage 13, 1 chapter 6.2, pp.125-126.

Internally, the transformations used are ADReverseAssignmentTrans, ADReverseOperationTrans and
ADReverseCallTrans, depending on the PSyIR node being transformed. These all return two separate lists
of PSyIR statements, used respectively in extending the recording and returning routines being generated.

5.3.1 Adjoints of operations

16 Chapter 5. Reverse-mode AD (adjoint)

PSyclone autodiff module, Release 0.0.1

Adjoints of unary operations

Advancing
motion

Recording motion Returning motion

f = +x value_tape(i) = f
f = +x

f = value_tape(i)
x_adj = x_adj + f_adj
f_adj = 0.0

f = -x value_tape(i) = f
f = -x

f = value_tape(i)
x_adj = x_adj - f_adj
f_adj = 0.0

f =
SQRT(x)

value_tape(i) = f
f = SQRT(x)

f = value_tape(i)
x_adj = x_adj + f_adj / (2 * SQRT(x))
f_adj = 0.0

f = EXP(x) value_tape(i) = f
f = EXP(x)

f = value_tape(i)
x_adj = x_adj + f_adj * EXP(x)
f_adj = 0.0

f = LOG(x) value_tape(i) = f
f = LOG(x)

f = value_tape(i)
x_adj = x_adj + f_adj / x
f_adj = 0.0

f =
LOG10(x)

value_tape(i) = f
f = LOG10(x)

f = value_tape(i)
x_adj = x_adj + f_adj / (x * LOG(10.0))
f_adj = 0.0

f = COS(x) value_tape(i) = f
f = COS(x)

f = value_tape(i)
x_adj = x_adj - f_adj * SIN(x)
f_adj = 0.0

f = SIN(x) value_tape(i) = f
f = SIN(x)

f = value_tape(i)
x_adj = x_adj + f_adj * COS(x)
f_adj = 0.0

f = TAN(x) value_tape(i) = f
f = TAN(x)

f = value_tape(i)
x_adj = x_adj + f_adj * (1.0 + TAN(x) ** 2)
f_adj = 0.0

f =
ACOS(x)

value_tape(i) = f
f = ACOS(x)

f = value_tape(i)
x_adj = x_adj - f_adj / SQRT(1.0 - x ** 2)
f_adj = 0.0

f =
ASIN(x)

value_tape(i) = f
f = ASIN(x)

f = value_tape(i)
x_adj = x_adj + f_adj / SQRT(1.0 - x ** 2)
f_adj = 0.0

f =
ATAN(x)

value_tape(i) = f
f = ATAN(x)

f = value_tape(i)
x_adj = x_adj + f_adj / (1.0 + x ** 2)
f_adj = 0.0

f = ABS(x) value_tape(i) = f
f = ABS(x)

f = value_tape(i)
x_adj = x_adj + f_adj * (x / ABS(x))
f_adj = 0.0

Note: some of these adjoints computations, explicitly those for SQRT, EXP, TAN and ABS, could reuse the (post)value
of f before restoring its prevalue from the value tape rather than recompute it (see Griewank and WaltherPage 13, 1 table
4.8, p.68). This is not implemented yet.

5.3. Generating adjoints 17

PSyclone autodiff module, Release 0.0.1

Adjoints of binary operations

Ad-
vancing
motion

Recording motion Returning motion

f = x +
y

value_tape(i) =
f
f = x + y

f = value_tape(i)
x_adj = x_adj + f_adj
y_adj = y_adj + f_adj
f_adj = 0.0

f = x -
y

value_tape(i) =
f
f = x - y

f = value_tape(i)
x_adj = x_adj + f_adj
y_adj = y_adj - f_adj
f_adj = 0.0

f = x *
y

value_tape(i) =
f
f = x * y

f = value_tape(i)
x_adj = x_adj + f_adj * y
y_adj = y_adj + f_adj * x
f_adj = 0.0

f = x /
y

value_tape(i) =
f
f = x / y

f = value_tape(i)
x_adj = x_adj + f_adj / y
y_adj = y_adj - f_adj * x / y ** 2
f_adj = 0.0

f = x **
y

value_tape(i) =
f
f = x ** y

f = value_tape(i)
x_adj = x_adj + f_adj * y * x ** (y - 1)
y_adj = y_adj + f_adj * x ** y * LOG(x)
f_adj = 0.0

Note: some of these adjoints computations, explicitly those for / and ** could reuse the (post)value of f before restoring
its prevalue from the value tape rather than recompute it (see Griewank and WaltherPage 13, 1 table 4.8, p.68). This is not
implemented yet.

The cases detailled above are the simpler ones, of assigning the result of an operation to a variable.

When composed operations are present, an adjoint variable is declared for the adjoint of the operation itself and used
to increment the adjoints of its operands.

The transformation option inline_operation_adjoints allows the user to choose whether these operation adjoints
should be substituted in further computations of adjoints as a postprocessing step, iff they only appear once on the RHS
of an assignment.

As an example, consider the following computation involving composed operations and the associated adjoints com-
putations, without and with substitution. Note: taping assignments are omitted below.

Com-
posed
operation

Adjoints, without substitution Adjoints, with substitution

f =
EXP(x)
+ z

op_adj = f_adj
z_adj = z_adj + f_adj
x_adj = x_adj + op_adj * EXP(x)
f_adj = 0.0

z_adj = z_adj + f_adj
x_adj = x_adj + f_adj * EXP(x)
f_adj = 0.0

18 Chapter 5. Reverse-mode AD (adjoint)

PSyclone autodiff module, Release 0.0.1

Adjoints of iterative assignments

In the case of iterative assignments ie. where the LHS variable of the assignment is also present on the RHS, additional
care must be taken to avoid incorrect computations of the LHS adjoint by assigning to it last rather than incrementing
its value as in the general case detailled above (see Griewank and WaltherPage 13, 1 chapter 5.1, p.93).

As an example consider the following adjoint:

Advancing
motion

Recording motion Returning motion

f = 2 * f +
x

value_tape(i) = f
f = 2 * f + x

f = value_tape(i)
x_adj = x_adj + f_adj
f_adj = f_adj * 2

5.3.2 Adjoints of calls to subroutines

The adjoints of calls to subroutines depend on the reversal schedule that is used.

Whether the prevalues of the arguments are recorded and restored from the tape depend on their intent in the called
subroutine, which determines whether their value might be overwritten by it or not.

Operations as subroutine call arguments are also transformed.

Split reversal schedule

Advancing motion Recording motion Returning motion
call func(x, y) [value_tape(i) = x] [x = value_tape(i)]

[value_tape(i + 1) = y] [y = value_tape(i + 1)]
call func_recording(x,y) call func_returning(x, x_adj, y, y_adj)

Joint reversal schedule

Advancing motion Recording motion Returning motion
call func(x, y) [value_tape(i) = x] [x = value_tape(i)]

[value_tape(i + 1) = y] [y = value_tape(i + 1)]
call func(x,y) call func_reversing(x, x_adj, y, y_adj)

5.3. Generating adjoints 19

PSyclone autodiff module, Release 0.0.1

20 Chapter 5. Reverse-mode AD (adjoint)

CHAPTER

SIX

FORWARD-MODE AD (TANGENT)

The derivative of the Fortran source code is constructed using a source-to-source and line-by-line approach, transform-
ing the target routine into a tangent routine, which computes the derivatives of the dependent variables with respect to
the independent variables.

This is implemented in PSyclone by parsing the source code file containing the target routine, and eventually the routines
it calls, transforming it into a PSyIR AST and applying forward-mode automatic differentiation transformations to the
nodes thus obtained. The resulting PSyIR tree is then written to Fortran source code.

6.1 Forward-mode transformations

All forward-mode AD transformations, to be applied to PSyIR nodes, follow the naming convention
ADForward[PSyIRNodeSubclass]Trans. The one users should use is ADForwardContainerTrans class and its
apply method.

6.1.1 Container transformation

After parsing the Fortran code file containing the target routine, an ADForwardContainerTrans instance
should be applied to it to perform automatic differentiation. This in turn applies an ADForwardRoutineTrans
to the target routine, which goes line-by-line through the statements found in the Routine node, applying
ADForward[PSyIRNodeSubclass]Trans to the statements, etc.

ADForwardContainerTrans

ADForwardRoutineTrans

(in)dependent vars

ADForwardAssignmentTrans

ADForwardOperationTrans

if composed

ADForwardCallTrans

if op argument

transform called routine

Fig. 1: Forward-mode AD transformation call graph

21

PSyclone autodiff module, Release 0.0.1

class psyclone.autodiff.transformations.ADForwardContainerTrans

A class for automatic differentation transformation of Container nodes in foward-mode. This is the transformation
to apply on the PSyIR AST generated from a source.

apply(container, routine_name, dependent_vars, independent_vars, options=None)
Applies the transformation, returning a new container with routine definitions using the forward-mode of
automatic differentiation.

Options:
- bool ‘jacobian’: whether to generate the Jacobian routine. Defaults to False.
- bool ‘verbose’ : toggles explanatory comments. Defaults to False.
- bool ‘simplify’: True to apply simplifications after applying AD transformations. Defaults to True.
- int ‘simplify_n_times’: number of time to apply simplification rules to BinaryOperation nodes. Defaults
to 5.

Parameters

• container (psyclone.psyir.nodes.Container) – Container Node to the trans-
formed.

• routine_name (Str) – name of the Routine to be transformed.

• dependent_vars (List[Str]) – list of dependent variables names to be differentiated.

• independent_vars (List[Str]) – list of independent variables names to differentiate with
respect to.

• options (Optional[Dict[Str, Any]]) – a dictionary with options for transforma-
tions, defaults to None.

Returns
a copied and modified container with all necessary Routine definitions.

Return type
psyclone.psyir.nodes.Container

For descriptions of the arguments, see the relevant sections of ADReverseContainerTrans: target routine, dependent
variables (to be differentiated) and independent variables (to differentiate with respect to).

The transformation returns a PSyIR Container node containing two Routine definitions for:

• the original target routine,

• the transformed tangent routine, which computes of the required derivatives.

If some other routine is called by the target one, the returned Container node also contains the original and tangent
definitions for it.

22 Chapter 6. Forward-mode AD (tangent)

PSyclone autodiff module, Release 0.0.1

6.2 Generating derivatives

The transformations applied to generate derivatives are detailled below. They mostly follow the guidelines found in
Griewank and Walther1 chapter 6.2, p.123.

6.2.1 Derivatives of unary operations

Original Transformed
f = +x f_d = x_d

f = +x
f = -x f_d = -x_d

f = -x
f = SQRT(x) f_d = x_d / (2 * SQRT(x))

f = SQRT(x)
f = EXP(x)

f_d = EXP(x) * x_d
f = EXP(x)

f = LOG(x) f_d = x_d / x
f = LOG(x)

f = LOG10(x) f_d = x_d / (x * LOG(10.0))
f = LOG10(x)

f = COS(x) f_d = (-SIN(x)) * x_d
f = COS(x)

f = SIN(x) f_d = COS(x) * x_d
f = SIN(x)

f = TAN(x) f_d = (1.0 + TAN(x) ** 2) * x_d
f = TAN(x)

f = ACOS(x) f_d = -x_d / SQRT(1.0 - x ** 2)
f = ACOS(x)

f = ASIN(x) f_d = x_d / SQRT(1.0 - x ** 2)
f = ASIN(x)

f = ATAN(x) f_d = x_d / (1.0 + x ** 2)
f = ATAN(x)

f = ABS(x) f_d = x / ABS(x) * x_d
f = ABS(x)

1 Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, 2008.

6.2. Generating derivatives 23

PSyclone autodiff module, Release 0.0.1

6.2.2 Derivatives of binary operations

Advancing motion Recording motion
f = x + y f_d = x_d + y_d

f = x + y
f = x - y f_d = x_d - y_d

f = x - y
f = x * y f_d = x_d * y + y_d * x

f = x * y
f = x / y f_d = (x_d - y_d * x / y) / y

f = x / y
f = x ** y f_d = x_d * (y * x ** (y - 1)) + y_d * (x ** y * LOG(x))

f = x ** y

6.2.3 Derivatives of calls to subroutines

Original Transformed
call func(x, y) call func_tangent(x, x_d, y, y_d)

24 Chapter 6. Forward-mode AD (tangent)

INDEX

A
ADForwardContainerTrans (class in psy-

clone.autodiff.transformations), 21
ADReverseContainerTrans (class in psy-

clone.autodiff.transformations), 12
ADValueTape (class in psyclone.autodiff.tapes), 15
apply() (psyclone.autodiff.transformations.ADForwardContainerTrans

method), 22
apply() (psyclone.autodiff.transformations.ADReverseContainerTrans

method), 12

R
record() (psyclone.autodiff.tapes.ADValueTape

method), 15
restore() (psyclone.autodiff.tapes.ADValueTape

method), 15

25

	Introduction
	Automatic differentiation (AD)
	Forward- or tangent-mode
	Advantages and inconvenients

	Reverse- or adjoint-mode
	Advantages and inconvenients
	A simple example in reverse-mode with non-linearities

	Getting started
	Download
	Environment and dependencies
	Installing
	Tutorial

	Implementation
	Implemented features
	Missing features

	Reverse-mode AD (adjoint)
	Reverse-mode transformations
	Container transformation
	Target routine
	Dependent variables
	Independent variables
	Reversal schedules
	Split reversal schedule
	Joint reversal schedule
	“Link” reversal schedule

	Value tape
	Generating adjoints
	Adjoints of operations
	Adjoints of unary operations
	Adjoints of binary operations
	Adjoints of iterative assignments

	Adjoints of calls to subroutines
	Split reversal schedule
	Joint reversal schedule

	Forward-mode AD (tangent)
	Forward-mode transformations
	Container transformation

	Generating derivatives
	Derivatives of unary operations
	Derivatives of binary operations
	Derivatives of calls to subroutines

	Index

